$\newcommand{\alicebob}[3]{#1 & \ra{#2} & #3\\[-5pt]}$ $\newcommand{\bobalice}[3]{#1 & \la{#2} & #3\\[-5pt]}$ $\newcommand{\alicework}[1]{#1 & &\\[-5pt]}$ $\newcommand{\bobwork}[1]{ & & #1\\[-5pt]}$ $\newcommand{\work}[2]{#1 & & #2\\}$ $\newcommand{\allwork}[1]{ & #1 & \\}$ $\newcommand{\aliceseparator}{-------&&\\}$ $\newcommand{\bobseparator}{&&-------\\}$ $\newcommand{\foo}{\phantom{\text{bigarrowfitsallthis}}}$ $\newcommand{\ra}[1]{% \vphantom{\xrightarrow{asd}}% \smash{\xrightarrow[\foo]{#1}}% }$ $\newcommand{\la}[1]{% \vphantom{\xleftarrow{asd}}% \smash{\xleftarrow[\foo]{#1}}% }$ $\newcommand{\z}[1]{\mathbb{Z}_{#1}}$ $\newcommand{\zq}{\mathbb{Z}_\varq}$ $\newcommand{\zqs}{\mathbb{Z}_q^\ast}$ $\newcommand{\zps}{\mathbb{Z}_p^\ast}$ $\newcommand{\zns}[1]{\mathbb{Z}_{#1}^\ast}$ $\require{action} \newcommand{\sampleSymb}{ {\overset{\$}{\leftarrow}} }$ $\newcommand{\field}[1]{\mathbb{F}_{#1}}$ $\newcommand{\sample}[1]{#1\sampleSymb\zq}$ $\newcommand{\sampleGeneric}[2]{#1\sampleSymb#2}$ $\newcommand{\sampleInterval}[2]{#1\sampleSymb\interval{#2}}$ $\newcommand{\sampleRange}[2]{#1\sampleSymb\range{#2}}$ $\newcommand{\samplezqs}[1]{\class{hover}{#1\sampleSymb\zqs}}$ $\newcommand{\sampleN}[2]{\class{hover}{#1\sampleSymb\z{#2}}}$ $\newcommand{\sampleNs}[2]{\class{hover}{#1\sampleSymb\z{#2}^\ast}}$ $\newcommand{\equalQ}{\overset{?}{=}}$ $\newcommand{\gQ}{\overset{?}{>}}$ $\newcommand{\inQ}{\overset{?}{\in}}$ $\newcommand{\cgroup}{\mathbb{G}}$ $\newcommand{\hash}[1]{\mathsf{Hash}({#1})}$ $\newcommand{\hashbit}[2]{\mathsf{Hash}({#1})\verb+[0:#2]+}$ $\newcommand{\naturals}{\mathbb{N}}$ $\newcommand{\sqfree}{L_\mathsf{square-free}}$ $\newcommand{\ceil}[1]{\lceil #1 \rceil}$ $\newcommand{\sampleSet}[2]{\class{hover}{#1\sampleSymb#2}}$ $\newcommand{\bunch}[1]{\{ #1_i\}_{i=1}^m}$ $\newcommand{\bunchi}[1]{\{ #1\}_{i=1}^m}$ $\newcommand{\forb}{\text{ for }i=1,\ldots,m}$ $\newcommand{\interval}[1]{[0, #1[}$ $\newcommand{\range}[1]{[#1]}$ $\newcommand{\rangeone}[1]{\{1, \dots,#1 -1 \}}$ $\newcommand{\vara}{\class{var var_a}{a}}$ $\newcommand{\varb}{\class{var var_b}{b}}$ $\newcommand{\varc}{\class{var var_c}{c}}$ $\newcommand{\vard}{\class{var var_d}{d}}$ $\newcommand{\varh}{\class{var var_h}{h}}$ $\newcommand{\varg}{\class{var var_g}{g}}$ $\newcommand{\varu}{\class{var var_u}{u}}$ $\newcommand{\varx}{\class{var var_x}{x}}$ $\newcommand{\varX}{\class{var var_X}{X}}$ $\newcommand{\varz}{\class{var var_z}{z}}$ $\newcommand{\varr}{\class{var var_r}{r}}$ $\newcommand{\varq}{\class{var var_q}{q}}$ $\newcommand{\varp}{\class{var var_p}{p}}$ $\newcommand{\vare}{\class{var var_e}{e}}$ $\newcommand{\vary}{\class{var var_y}{y}}$ $\newcommand{\varw}{\class{var var_w}{w}}$ $\newcommand{\varprover}{\class{var var_Prover}{\text{Prover}}}$ $\newcommand{\varprover}{\class{var var_Prover}{\text{Prover}}}$ $\newcommand{\varverifier}{\class{var var_Verifier}{\text{Verifier}}}$ $\newcommand{\varN}{\class{var var_N}{N}}$ $\newcommand{\rhovar}{\class{var var_ρ}{\rho}}$ $\newcommand{\sigmavar}{\class{var var_σ}{\sigma}}$ $\newcommand{\thetavar}{\class{var var_θ}{\theta}}$ $\newcommand{\muvar}{\class{var var_μ}{\mu}}$ $\newcommand{\true}{\mathsf{true}}$ $\newcommand{\false}{\mathsf{false}}$
Notation & Definitions

Notation and Definitions #

This page is a glossary for notation and concepts present in the documentation.

Sets, Groups, and Special Functions #

  • $\mathbb{Z}$ is the set of integers, $\{\ldots, -2, -1, 0, 1, 2, \ldots\}$.
  • $\naturals$ is the set of integers greater of equal than 0, $\{0, 1, 2, \ldots\}$.
  • $\range{b}$ is the finite set of integers $\{0, \ldots, b-1\}$.
  • $\gcd(n, m)$ is the nonnegative greatest common divisor of integers $n$ and $m$; when $\gcd(n, m) = 1$, $n$ and $m$ are said to be coprime.
  • $\z{n}$ are the integers modulo $n$, a set associated with the equivalence classes of integers $\{0, 1, \ldots, n-1\}$.
  • $\zns{n}$ is the multiplicative group of integers modulo $n$: an element $e$ from $\z{n}$ is in $\zns{n}$ iff $\gcd(e, n) = 1$, that is $\zns{n} = \{e \in \z{n}: \gcd(e, n) = 1\}$. When $n$ is prime, then $\zns{n} = \{1, \ldots, n-1\}$.
  • $\field{p}$ is the finite field of order $p$; when $p$ is a prime number, these are the integers modulo $p$, $\z{p}$; when $p$ is a prime power $q^k$, these are Galois fields.
  • $\varphi(n)$ is Euler’s totient function; for $n\geq 1$, it is the number of integers in $\{1,\ldots, n\}$ coprime with $n.$
  • $|S|$ is the order of a set $S$, i.e., its number of elements. For example, $|\zns{n}| = \varphi(n)$, and for a prime $n$, $|\zns{n}| = n-1$.

Number-theory #

  • $J(w, n)\in \{-1, 0, 1\}$ is the Jacobi symbol of $w$ modulo $n$, only defined for positive and odd $n$.
  • $J_n$ is the set of elements of $\zns{n}$ with Jacobi symbol $1$.
  • $QR_n$ is the set of quadratic residues modulo $n$, which are elements that have a square-root, i.e., $QR_n = \{e \in \z{n} : \exists r . r^2 = e \mod n\}$.

Sampling #

In protocol specifications, we will often need to uniformly sample elements from sets. We will use the following notation:

  • $\sampleGeneric{x}{X}$, where $x$ is uniformly sampled from the set $X$.

Consider reading the section on Random Sampling to learn how to correctly sample a number uniformly using rejection sampling, avoiding the modulo-bias issue.

Assertions #

We will use assertions in protocol descriptions. When the assertions do not hold, the protocol must abort to avoid leaking secret information.

  • $a \equalQ b$, requires $a=b$, and aborts otherwise
  • $a \gQ b$, requires $a>b$, and aborts otherwise
  • $a \inQ S$, requires that $a$ is in the set $S$, and aborts otherwise.

Implementations of number-theoretic algorithms #

In general, we highly recommend the Handbook of Applied Cryptography, which has detailed descriptions of most algorithms.

Hash Functions #

  • $\hash{\cdot}$ is a cryptographically secure domain-separated hash function.
  • $\hashbit{\cdot}{k}$ is a cryptographically secure domain-separated hash function with specific output-size of $k$-bits.

Find more details on the particular hash functions in Nothing-up-my-sleeve constructions

References #